Influence of input parameters on the performance of an artificial neural network used to detect structural damage

Jesus Daniel Villalba, Ivan Dario Gomez, Jose Elias Laier

Producción: Contribución a una revistaArtículo de la conferenciarevisión exhaustiva

Resumen

Structural damage detection is a very important research topic and, currently, there are not specific tools to solve it. A promising tool that can be used is the artificial neural network, ANN, which can deal with hard problems. This paper uses a back propagation ANN with Bayesian regularization training to locate and quantify damage in truss structures. The input parameters corresponded to natural frequencies combined with shape modes, modal flexibilities or modal strain energies. The ANN was trained by considering only simple damage scenarios, random multiple damage scenarios or a combination of them. The results are shown in terms of the percentage of cases in which the ANN trained achieves a determined performance in assessing both the damage extension and the presence of damaged elements. The best performance for the ANN is obtained by using modal strain energies and multiple damage scenarios.

Idioma originalInglés
Páginas (desde-hasta)1219-1222
Número de páginas4
PublicaciónAIP Conference Proceedings
Volumen1281
DOI
EstadoPublicada - 2010
Publicado de forma externa
EventoInternational Conference on Numerical Analysis and Applied Mathematics 2010, ICNAAM-2010 - Rhodes, Grecia
Duración: 19 sep. 201025 sep. 2010

Huella

Profundice en los temas de investigación de 'Influence of input parameters on the performance of an artificial neural network used to detect structural damage'. En conjunto forman una huella única.

Citar esto