Individual hand motion classification through EMG pattern recognition: Supervise and unsupervised methods

Carolina Castiblanco, Carlos Parra, Julian Colorado

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

10 Citas (Scopus)

Resumen

The EMG signals are being used in electronic systems with biofeedback control for tracking and classifying of hand motion. These systems present a challenge in identifying the movement due to the variation of the EMG signals between subjects, therefore different pattern recognition techniques have been implemented to overcome this challenge. In response to the previous problem, the present study compares the performance of both K - means and SVM methods to identify five individual movements of the hand. Therefore two techniques of classification were implemented, the first one consist of classifying the movements individually. while the second classifies all five movements through technic based on decision trees. Also this paper analyses the influence of the signal normalization over the performance of the classification. In general, SVM classifier performed better against K - means in the two tests with the error percentage below 9%.

Idioma originalInglés
Título de la publicación alojada2016 21st Symposium on Signal Processing, Images and Artificial Vision, STSIVA 2016
EditoresMiguel Altuve
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781509037971
DOI
EstadoPublicada - 14 nov. 2016
Evento21st Symposium on Signal Processing, Images and Artificial Vision, STSIVA 2016 - Bucaramanga, Colombia
Duración: 30 ago. 201602 sep. 2016

Serie de la publicación

Nombre2016 21st Symposium on Signal Processing, Images and Artificial Vision, STSIVA 2016

Conferencia

Conferencia21st Symposium on Signal Processing, Images and Artificial Vision, STSIVA 2016
País/TerritorioColombia
CiudadBucaramanga
Período30/08/1602/09/16

Huella

Profundice en los temas de investigación de 'Individual hand motion classification through EMG pattern recognition: Supervise and unsupervised methods'. En conjunto forman una huella única.

Citar esto