Imputação múltipla livre de distribuição em tabelas incompletas de dupla entrada

Sergio Arciniegas-Alarcón, Carlos Tadeu Dos Santos Dias, Marisol García-Peña

Producción: Contribución a una revistaArtículorevisión exhaustiva

7 Citas (Scopus)

Resumen

The objective of this work was to propose a new distribution-free multiple imputation algorithm, through modifications of the simple imputation method recently developed by Yan in order to circumvent the problem of unbalanced experiments. The method uses the singular value decomposition of a matrix and was tested using simulations based on two complete matrices of real data, obtained from eucalyptus and sugarcane trials, with values deleted randomly at different percentages. The quality of the imputations was evaluated by a measure of overall accuracy that combines the variance between imputations and their mean square deviations in relation to the deleted values. The best alternative for multiple imputation is a multiplicative model that includes weights near to 1 for the eigenvalues calculated with the decomposition. The proposed methodology does not depend on distributional or structural assumptions and does not have any restriction regarding the pattern or the mechanism of the missing data.

Título traducido de la contribuciónDistribution-free multiple imputation in incomplete two-way tables
Idioma originalPortugués
Páginas (desde-hasta)683-691
Número de páginas9
PublicaciónPesquisa Agropecuaria Brasileira
Volumen49
N.º9
DOI
EstadoPublicada - 2014
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Imputação múltipla livre de distribuição em tabelas incompletas de dupla entrada'. En conjunto forman una huella única.

Citar esto