Implementation of a Pattern Classifier on Thermograms from Plantar Region

Santiago Humberto Ramírez Martínez, Martha Lucia Zequera Díaz, Francisco Carlos Calderón Bocanegra

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This study aims to implement a pattern classification algorithm for plantar thermograms, focusing on identifying altered temperature zones in the feet of diabetic patients. Utilizing a database of 334 thermograms, various classification algorithms including Support Vector Machine (SVM), Logistic Regression, Artificial Neural Network (ANN), Random Forest, and K Nearest Neighbors (KNN) were evaluated. Features extracted from the literature, such as number of pixels, maximum entropy, variance, mean value, correlation, contrast, energy, and homogeneity, were utilized for training and evaluation. The classification task involved assigning thermograms to 5 classes based on the thermal change index (TCI). Performance evaluation was conducted using an information theory metric approach based on mutual information, measuring the alignment between predicted and true classes. The neural network achieved the highest mutual information score of 2.69 out of 5, indicating that approximately 53.8% of the information obtained from model predictions aligned with the true classes. Additionally, a database was established in the Footlab BASPI laboratory, comprising 20 thermograms from the plantar region of 10 control subjects. A novel protocol, incorporating additional elements to the STANDUP base protocol, was proposed. Finally, classification using the ANN on data acquired from the Footlab - BASPI database yielded satisfactory results, successfully distinguishing between 1.7 classes, representing an 85% success rate in classifying thermograms.

Idioma originalInglés
Título de la publicación alojada9th European Medical and Biological Engineering Conference - Proceedings of EMBEC 2024
EditoresTomaž Jarm, Rok Šmerc, Samo Mahnič-Kalamiza
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas81-90
Número de páginas10
ISBN (versión impresa)9783031616273
DOI
EstadoPublicada - 2024
Evento9th European Medical and Biological Engineering Conference, EMBEC 2024 - Portorož, Eslovenia
Duración: 09 jun. 202413 jun. 2024

Serie de la publicación

NombreIFMBE Proceedings
Volumen113
ISSN (versión impresa)1680-0737
ISSN (versión digital)1433-9277

Conferencia

Conferencia9th European Medical and Biological Engineering Conference, EMBEC 2024
País/TerritorioEslovenia
CiudadPortorož
Período09/06/2413/06/24

Huella

Profundice en los temas de investigación de 'Implementation of a Pattern Classifier on Thermograms from Plantar Region'. En conjunto forman una huella única.

Citar esto