Hybrid model rating prediction with linked open data for recommender systems

Andrés Moreno, Christian Ariza-Porras, Paula Lago, Claudia Lucía Jiménez-Guarín, Harold Castro, Michel Riveill

Producción: Capítulo del libro/informe/acta de congresoCapítulo en libro de investigaciónrevisión exhaustiva

16 Citas (Scopus)

Resumen

We detail the solution of team uniandes1 to the ESWC 2014 Linked Open Data-enabled Recommender Systems Challenge Task 1 (rating prediction on a cold start situation). Ín these situations, there are few ratings per item and user and thus collaborative filtering techniques may not be suitable. Ín order to be able to use a content-based solution, linked-open data from DBPedia was used to obtain a set of descriptive features for each item. We compare the performance (measured as RMSE) of three models on this cold-start situation: contentbased (using min-count sketches), collaborative filtering (SVD++) and rule-based switched hybrid models. Experimental results show that the hybrid system outperforms each of the models that compose it. Since features taken from DBPedia were sparse, we clustered items in order to reduce the dimensionality of the item and user profiles.

Idioma originalInglés
Título de la publicación alojadaSemantic Web Evaluation Challenge - SemWebEval 2014 at ESWC 2014, Revised Selected Papers
EditoresTommaso Di Noia, Valentina Presutti, Diego Reforgiato Recupero, Iván Cantador, Christoph Lange, Christoph Lange, Anna Tordai, Christoph Lange, Milan Stankovic, Erik Cambria, Angelo Di Iorio
EditorialSpringer Verlag
Páginas193-198
Número de páginas6
ISBN (versión digital)9783319120232
DOI
EstadoPublicada - 2014
Publicado de forma externa

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen475
ISSN (versión impresa)1865-0929

Huella

Profundice en los temas de investigación de 'Hybrid model rating prediction with linked open data for recommender systems'. En conjunto forman una huella única.

Citar esto