Hopf bifurcation at infinity in 3D symmetric piecewise linear systems. Application to a Bonhoeffer–van der Pol oscillator

E. Freire, E. Ponce, J. Ros, E. Vela, A. Amador

Producción: Contribución a una revistaArtículorevisión exhaustiva

12 Citas (Scopus)

Resumen

In this work, a Hopf bifurcation at infinity in three-dimensional symmetric continuous piecewise linear systems with three zones is analyzed. By adapting the so-called closing equations method, which constitutes a suitable technique to detect limit cycles bifurcation in piecewise linear systems, we give for the first time a complete characterization of the existence and stability of the limit cycle of large amplitude that bifurcates from the point at infinity. Analytical expressions for the period and amplitude of the bifurcating limit cycles are obtained. As an application of these results, we study the appearance of a large amplitude limit cycle in a Bonhoeffer–van der Pol oscillator.

Idioma originalInglés
Número de artículo103112
PublicaciónNonlinear Analysis: Real World Applications
Volumen54
DOI
EstadoPublicada - ago. 2020

Huella

Profundice en los temas de investigación de 'Hopf bifurcation at infinity in 3D symmetric piecewise linear systems. Application to a Bonhoeffer–van der Pol oscillator'. En conjunto forman una huella única.

Citar esto