Fuzzy interval modelling based on joint supervision

Diego Munoz-Carpintero, Sebastian Parra, Oscar Cartagena, Doris Saez, Luis G. Marin, Igor Skrjanc

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

This paper presents a new methodology for Prediction Interval (PI) construction based on a modified Takagi-Sugeno fuzzy system trained with a joint Supervision loss function. Given a desired coverage level, this model is capable of providing predictions of the expected value of the system along with the interval bounds. This methodology is tested by simulation experiments using a dataset containing real temperature data from a rural community in southern Chile. The proposed model was compared with a state-of-the-art Takagi-Sugeno Fuzzy Numbers model. It was shown that the Joint Supervision method manages to obtain slightly superior results to the Fuzzy Numbers approach while greatly reducing the complexity of the training loss function. Additionally, since the proposed model was trained using Particle Swarm Optimization, further performance improvements could be made by employing gradient-based optimization algorithms, since they are compatible with the Joint Supervision loss function.

Idioma originalInglés
Título de la publicación alojada2020 IEEE International Conference on Fuzzy Systems, FUZZ 2020 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781728169323
DOI
EstadoPublicada - jul. 2020
Publicado de forma externa
Evento2020 IEEE International Conference on Fuzzy Systems, FUZZ 2020 - Glasgow, Reino Unido
Duración: 19 jul. 202024 jul. 2020

Serie de la publicación

NombreIEEE International Conference on Fuzzy Systems
Volumen2020-July
ISSN (versión impresa)1098-7584

Conferencia

Conferencia2020 IEEE International Conference on Fuzzy Systems, FUZZ 2020
País/TerritorioReino Unido
CiudadGlasgow
Período19/07/2024/07/20

Huella

Profundice en los temas de investigación de 'Fuzzy interval modelling based on joint supervision'. En conjunto forman una huella única.

Citar esto