Fitness-Weighted Preferential Attachment with Varying Number of New Connections

Juan Romero, Jorge Finke, Andrés Salazar

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Preferential attachment models are used to explain the emergence of power laws in the degree distributions of networks. These models assume that a new node attaches to a network by establishing edges to a fixed number of nodes. Nonetheless, for many empirical networks the number of new edges varies as more nodes become part of the network. This paper extends the linear preferential attachment model by considering that the number of new edges is characterized by a random variable that obeys a power law probability function. While most new nodes connect to a few nodes, some nodes connect to a larger number. We characterize the dynamics of growth of the degrees of the nodes and the degree distribution of the network.

Idioma originalInglés
Título de la publicación alojadaComplex Networks and Their Applications VIII - Volume 1 Proceedings of the 8th International Conference on Complex Networks and Their Applications, COMPLEX NETWORKS 2019
EditoresHocine Cherifi, Sabrina Gaito, José Fernendo Mendes, Esteban Moro, Luis Mateus Rocha
EditorialSpringer
Páginas612-620
Número de páginas9
ISBN (versión impresa)9783030366865
DOI
EstadoPublicada - 2020
Evento8th International Conference on Complex Networks and their Applications, COMPLEX NETWORKS 2019 - Lisbon, Portugal
Duración: 10 dic. 201912 dic. 2019

Serie de la publicación

NombreStudies in Computational Intelligence
Volumen881 SCI
ISSN (versión impresa)1860-949X
ISSN (versión digital)1860-9503

Conferencia

Conferencia8th International Conference on Complex Networks and their Applications, COMPLEX NETWORKS 2019
País/TerritorioPortugal
CiudadLisbon
Período10/12/1912/12/19

Huella

Profundice en los temas de investigación de 'Fitness-Weighted Preferential Attachment with Varying Number of New Connections'. En conjunto forman una huella única.

Citar esto