TY - CHAP
T1 - First-principles-based multiscale, multiparadigm molecular mechanics and dynamics methods for describing complex chemical processes
AU - Jaramillo-Botero, Andres
AU - Nielsen, Robert
AU - Abrol, Ravi
AU - Su, Julius
AU - Pascal, Tod
AU - Mueller, Jonathan
AU - Goddard, William A.
N1 - Funding Information:
The material on single shock Hugoniot is based upon work supported by the Department of Energy’s National Nuclear Security Administration under Award Number DE-FC52-08NA28613. The material on hydrogel mechanics for tissue engineering scaffolding is based upon work supported by the National Science Foundation (CMMI 0727870). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author/s and do not necessarily reflect the views of the National Science Foundation. The early developments of these multiscale multiparadigm methods were initiated with support by DOE under the ECUT program (Prog. Mgr. Minoo Dastoor) and continued DAPRA under the PROM and ONR programs (Prog. Mgr. Carey Swartz, Judah Goldwasser, and Steve Wax). Substantial support was provided by ARO-MURI, ONR-MURI, DURIP, and ASCI projects along with Chevron, Dow-Corning, Aventis, Asahi Kasei, Intel, PharmSelex, and many other industrial labs.
PY - 2012
Y1 - 2012
N2 - We expect that systematic and seamless computational upscaling and downscaling for modeling, predicting, or optimizing material and system properties and behavior with atomistic resolution will eventually be sufficiently accurate and practical that it will transform the mode of development in the materials, chemical, catalysis, and Pharma industries. However, despite truly dramatic progress in methods, software, and hardware, this goal remains elusive, particularly for systems that exhibit inherently complex chemistry under normal or extreme conditions of temperature, pressure, radiation, and others. We describe here some of the significant progress towards solving these problems via a general multiscale, multiparadigm strategy based on first-principles quantum mechanics (QM), and the development of breakthrough methods for treating reaction processes, excited electronic states, and weak bonding effects on the conformational dynamics of large-scale molecular systems. These methods have resulted directly from filling in the physical and chemical gaps in existing theoretical and computational models, within the multiscale, multiparadigm strategy. To illustrate the procedure we demonstrate the application and transferability of such methods on an ample set of challenging problems that span multiple fields, system length-and timescales, and that lay beyond the realm of existing computational or, in some case, experimental approaches, including understanding the solvation effects on the reactivity of organic and organometallic structures, predicting transmembrane protein structures, understanding carbon nanotube nucleation and growth, understanding the effects of electronic excitations in materials subjected to extreme conditions of temperature and pressure, following the dynamics and energetics of long-term conformational evolution of DNA macromolecules, and predicting the long-term mechanisms involved in enhancing the mechanical response of polymer-based hydrogels.
AB - We expect that systematic and seamless computational upscaling and downscaling for modeling, predicting, or optimizing material and system properties and behavior with atomistic resolution will eventually be sufficiently accurate and practical that it will transform the mode of development in the materials, chemical, catalysis, and Pharma industries. However, despite truly dramatic progress in methods, software, and hardware, this goal remains elusive, particularly for systems that exhibit inherently complex chemistry under normal or extreme conditions of temperature, pressure, radiation, and others. We describe here some of the significant progress towards solving these problems via a general multiscale, multiparadigm strategy based on first-principles quantum mechanics (QM), and the development of breakthrough methods for treating reaction processes, excited electronic states, and weak bonding effects on the conformational dynamics of large-scale molecular systems. These methods have resulted directly from filling in the physical and chemical gaps in existing theoretical and computational models, within the multiscale, multiparadigm strategy. To illustrate the procedure we demonstrate the application and transferability of such methods on an ample set of challenging problems that span multiple fields, system length-and timescales, and that lay beyond the realm of existing computational or, in some case, experimental approaches, including understanding the solvation effects on the reactivity of organic and organometallic structures, predicting transmembrane protein structures, understanding carbon nanotube nucleation and growth, understanding the effects of electronic excitations in materials subjected to extreme conditions of temperature and pressure, following the dynamics and energetics of long-term conformational evolution of DNA macromolecules, and predicting the long-term mechanisms involved in enhancing the mechanical response of polymer-based hydrogels.
KW - Multiscale modeling
KW - Nanotube growth
KW - Non-adiabatic molecular dynamics
KW - Organometallic structures
KW - Protein structure prediction
KW - Reactive molecular dynamics
UR - http://www.scopus.com/inward/record.url?scp=81855185386&partnerID=8YFLogxK
U2 - 10.1007/128-2010_114
DO - 10.1007/128-2010_114
M3 - Chapter
C2 - 21243466
AN - SCOPUS:81855185386
SN - 9783642249679
T3 - Topics in Current Chemistry
SP - 1
EP - 42
BT - Multiscale Molecular Methods in Applied Chemistry
A2 - Kirchner, Barbara
A2 - Vrabec, Jadran
ER -