Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning

Yineth Viviana Camacho-De Angulo, Nicolas Cechinel Rosa, Yady Tatiana Solano-Correa, Mauro Roisenberg

Producción: Contribución a una conferenciaPaperrevisión exhaustiva

Resumen

Wildfires in the Brazilian Amazon have raised significant concerns owing to the environmental, social, and global impacts associated with these events. They have led to habitat loss for various species and release of substantial amounts of carbon dioxide into the atmosphere. Thereby contributing to climate change and deterioration of air quality due to pollutants emission. The integration of advanced technologies, including high-spatial resolution satellite data and image processing algorithms, enables a more precise and comprehensive understanding of the wildfire scenario. This research introduces a model based on deep learning that can be applied over Sentinel-2 images to reliably detect fire scars with an accuracy above 90% (92% on training data and 82% on validation data). A SpectrumNet convolutional neural network was employed, incorporating features extracted from spectral bands at 10m and 20m.

Idioma originalInglés
Páginas2773-2776
Número de páginas4
DOI
EstadoPublicada - 2024
Publicado de forma externa
Evento2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 - Athens, Grecia
Duración: 07 jul. 202412 jul. 2024

Conferencia

Conferencia2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024
País/TerritorioGrecia
CiudadAthens
Período07/07/2412/07/24

Huella

Profundice en los temas de investigación de 'Fire Scars Mapping Over Brazilian Amazon Forest by Exploiting Sentinel-2 Data and Deep Learning'. En conjunto forman una huella única.

Citar esto