TY - GEN
T1 - Feature selection for multimodal emotion recognition in the arousal-valence space
AU - Torres, Cristian A.
AU - Orozco, Alvaro A.
AU - Alvarez, Mauricio A.
PY - 2013
Y1 - 2013
N2 - Emotion recognition is a challenging research problem with a significant scientific interest. Most of the emotion assessment studies have focused on the analysis of facial expressions. Recently, it has been shown that the simultaneous use of several biosignals taken from the patient may improve the classification accuracy. An open problem in this area is to identify which biosignals are more relevant for emotion recognition. In this paper, we perform Recursive Feature Elimination (RFE) to select a subset of features that allows emotion classification. Experiments are carried out over a multimodal database with arousal and valence annotations, and a diverse range of features extracted from physiological, neurophysiological, and video signals. Results show that several features can be eliminated while still preserving classification accuracy in setups of 2 and 3 classes. Using a small subset of the features, it is possible to reach 70% accuracy for arousal and 60% accuracy for valence in some experiments. Experimentally, it is shown that the Galvanic Skin Response (GSR) is relevant for arousal classification, while the electroencephalogram (EEG) is relevant for valence.
AB - Emotion recognition is a challenging research problem with a significant scientific interest. Most of the emotion assessment studies have focused on the analysis of facial expressions. Recently, it has been shown that the simultaneous use of several biosignals taken from the patient may improve the classification accuracy. An open problem in this area is to identify which biosignals are more relevant for emotion recognition. In this paper, we perform Recursive Feature Elimination (RFE) to select a subset of features that allows emotion classification. Experiments are carried out over a multimodal database with arousal and valence annotations, and a diverse range of features extracted from physiological, neurophysiological, and video signals. Results show that several features can be eliminated while still preserving classification accuracy in setups of 2 and 3 classes. Using a small subset of the features, it is possible to reach 70% accuracy for arousal and 60% accuracy for valence in some experiments. Experimentally, it is shown that the Galvanic Skin Response (GSR) is relevant for arousal classification, while the electroencephalogram (EEG) is relevant for valence.
UR - http://www.scopus.com/inward/record.url?scp=84886528266&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2013.6610504
DO - 10.1109/EMBC.2013.6610504
M3 - Conference contribution
C2 - 24110691
AN - SCOPUS:84886528266
SN - 9781457702167
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 4330
EP - 4333
BT - 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
T2 - 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Y2 - 3 July 2013 through 7 July 2013
ER -