Fault detection and diagnosis in monitoring a hot dip galvanizing line using multivariate statistical process control

Producción: Capítulo del libro/informe/acta de congresoCapítulo en libro de investigaciónrevisión exhaustiva

Resumen

Fault detection and diagnosis is an important problem in continuous hot dip galvanizing and the increasingly stringent quality requirements in automotive industry has also demanded ongoing efforts in process control to make the process more robust. Multivariate monitoring and diagnosis techniques have the power to detect unusual events while their impact is too small to cause a significant deviation in any single process variable. Robust methods for outlier detection in process control are a tool for the comprehensive monitoring of the performance of a manufacturing process. The present paper reports a comparative evaluation of robust multivariate statistical process control techniques for process fault detection and diagnosis in the zinc-pot section of hot dip galvanizing line.

Idioma originalInglés
Título de la publicación alojadaSafety, Reliability and Risk Analysis
Subtítulo de la publicación alojadaTheory, Methods and Applications: Volume 1
EditorialCRC Press
Páginas201-204
Número de páginas4
Volumen1
ISBN (versión digital)9781000116281
ISBN (versión impresa)9780415485142
DOI
EstadoPublicada - 01 ene. 2020
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Fault detection and diagnosis in monitoring a hot dip galvanizing line using multivariate statistical process control'. En conjunto forman una huella única.

Citar esto