Facial expression analysis for emotion recognition using kernel methods and statistical models

Hernán F. Garcia, Cristian A. Torres, Jorge Ivan Marin Hurtado

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

In this paper we present our framework for facial expression analysis using static models and kernel methods for classification. We describe the characterization methodology from parametric model. Also quantitatively evaluated the accuracy for feature detection and estimation of the parameters associated with facial expressions, analyzing its robustness to variations in pose. Then, a methodology of emotion characterization is introduced to perform the recognition. Furthermore, a cascade classifiers using kernel methods it is performed for emotion recognition. The experimental results show that the proposed model can effectively detect the different facial expressions. The model used and characterization methodology showed efficient to detect the emotion type in 93.4% of the cases.

Idioma originalInglés
Título de la publicación alojada2014 19th Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2014
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781479976669
DOI
EstadoPublicada - 14 ene. 2015
Publicado de forma externa
Evento2014 19th Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2014 - Armenia-Quindio, Colombia
Duración: 17 sep. 201419 sep. 2014

Serie de la publicación

Nombre2014 19th Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2014

Conferencia

Conferencia2014 19th Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2014
País/TerritorioColombia
CiudadArmenia-Quindio
Período17/09/1419/09/14

Huella

Profundice en los temas de investigación de 'Facial expression analysis for emotion recognition using kernel methods and statistical models'. En conjunto forman una huella única.

Citar esto