TY - JOUR
T1 - Experimental Solution of Chitosan and Nanochitosan on Wettability in Root Dentine
T2 - In Vitro Model Prior Regenerative Endodontics
AU - Arias Alvarado, Fernando
AU - Iriarte, Maira Rivero
AU - Jordan Mariño, Freddy
AU - Quijano-Guauque, Sara
AU - Pérez, León D.
AU - Baena, Yolima
AU - García-Guerrero, Claudia
N1 - Publisher Copyright:
© 2021 Fernando Arias Alvarado et al.
PY - 2021
Y1 - 2021
N2 - Context. The wettability of the chemically modified dentin substrate is a condition that intervenes in dentin-vascular and cellular interaction across regenerative endodontics. Aims. To compare the effect of CS and CSnp on the wettability in root dentine with other irrigation protocols with an experimental in vitro model prior regenerative endodontics. Methods and Material. An in vitro experimental study that included eighty hemisected human root distributed into 8 groups: G1- distilled water; G2- 1% NaOCl/17% EDTA; G3- hypochlorous acid 0.025% HOCl, G4- 1% NaOCl/0.025% HOCl/17% EDTA, G5- 0.2 g/100 mL CS, G6- 1% NaOCl/0.2 g/100 mL CS, G7- CSnp, and G8- 1% NaOCl/CSnp. The wettability analysis calculated the contact angle (θ) between a drop of a blood-like and root dentinal surface; topographic characterization with scanning electron microscopy (SEM) quantified the diameter and number of tubules per area; spectroscopy infrared analyses (IR-S) identified chemical changes in the inorganic (phosphate/carbonate) and organic phase (amide/methyl). Statistical analysis: a linear mixed model, Kruskal-Wallis, and Holm-Bonferroni correction (P < 0.05) were used. Results. Significantly higher wettability for G2 (27.1 (P = 0.0001)) was found. A mean value of 67°±°for experimental groups (P = 0.07) was found, and we did not identify differences between them. The SEM identified greater tubular opening and erosion for G4 and greater dentinal permeability per area for NaOCl/CS. IR-S identified dentinal organic integrity with NaOCl-CS/CSnp compared to organic reduction promoted for NaOCl/EDTA. Conclusions. This in vitro dentin determined an indirect association between the wettability and organic contents. The oxidative effect of NaOCl could be neutralized by CS-CSnp, and consequently, the wettability of the substrate decreases.
AB - Context. The wettability of the chemically modified dentin substrate is a condition that intervenes in dentin-vascular and cellular interaction across regenerative endodontics. Aims. To compare the effect of CS and CSnp on the wettability in root dentine with other irrigation protocols with an experimental in vitro model prior regenerative endodontics. Methods and Material. An in vitro experimental study that included eighty hemisected human root distributed into 8 groups: G1- distilled water; G2- 1% NaOCl/17% EDTA; G3- hypochlorous acid 0.025% HOCl, G4- 1% NaOCl/0.025% HOCl/17% EDTA, G5- 0.2 g/100 mL CS, G6- 1% NaOCl/0.2 g/100 mL CS, G7- CSnp, and G8- 1% NaOCl/CSnp. The wettability analysis calculated the contact angle (θ) between a drop of a blood-like and root dentinal surface; topographic characterization with scanning electron microscopy (SEM) quantified the diameter and number of tubules per area; spectroscopy infrared analyses (IR-S) identified chemical changes in the inorganic (phosphate/carbonate) and organic phase (amide/methyl). Statistical analysis: a linear mixed model, Kruskal-Wallis, and Holm-Bonferroni correction (P < 0.05) were used. Results. Significantly higher wettability for G2 (27.1 (P = 0.0001)) was found. A mean value of 67°±°for experimental groups (P = 0.07) was found, and we did not identify differences between them. The SEM identified greater tubular opening and erosion for G4 and greater dentinal permeability per area for NaOCl/CS. IR-S identified dentinal organic integrity with NaOCl-CS/CSnp compared to organic reduction promoted for NaOCl/EDTA. Conclusions. This in vitro dentin determined an indirect association between the wettability and organic contents. The oxidative effect of NaOCl could be neutralized by CS-CSnp, and consequently, the wettability of the substrate decreases.
UR - http://www.scopus.com/inward/record.url?scp=85119017041&partnerID=8YFLogxK
U2 - 10.1155/2021/8772706
DO - 10.1155/2021/8772706
M3 - Article
AN - SCOPUS:85119017041
SN - 1687-8787
VL - 2021
JO - International Journal of Biomaterials
JF - International Journal of Biomaterials
M1 - 8772706
ER -