Exact relaxations of non-convex variational problems

René Meziat, Diego Patiño

Producción: Contribución a una revistaArtículorevisión exhaustiva

5 Citas (Scopus)

Resumen

Here, we solve non-convex, variational problems given in the form Equation is presented where u ε(W 1,∞(0, 1)) k and f : ℝk → ℝ is a non-convex, coercive polynomial. To solve (1) we analyse the convex hull of the integrand at the point a, so that we can find vectors a1,...,aN ε ℝk and positive values λ1, . . . , λ N satisfying the non-linear equation (1, a, fc(a)) = ∑i=1M Nλ1(1, ai, f(ai)).(2) Thus, we can calculate minimizers of (1) by following a proposal of Dacorogna in (Direct Methods in the Calculus of Variations. Springer, Heidelberg, 1989). Indeed, we can solve (2) by using a semidefinite program based on multidimensional moments.

Idioma originalInglés
Páginas (desde-hasta)505-519
Número de páginas15
PublicaciónOptimization Letters
Volumen2
N.º4
DOI
EstadoPublicada - ago. 2008
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Exact relaxations of non-convex variational problems'. En conjunto forman una huella única.

Citar esto