Evaluation of set-membership approaches for data-driven tuning of two-degree-of-freedom controllers

F. Valderrama, F. Ruiz, D. Patino

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Set-Membership theory offers solutions to the data-driven controller tuning problem that do not rely on stochastic models of noises and disturbances. In this paper, two approaches are evaluated for the design of Two-Degree-of-Freedom (2DoF) controllers. They are based on Errors-in-Variables and Output-Error formulations, assuming unknown but bounded noise sequences. First, it is derived a setting to estimate from data controllers capable of approaching a given closed-loop reference model and a sensitivity transfer function. Then, the controller estimation problems are transformed in equivalent Set-Membership Errors-in-Variables and Output-Error identification setups. Finally, both approaches are evaluated on a numerical example and it is observed that a similar performance is obtained by the two methods, while the Output-Error setting is more than one hundred times faster.

Idioma originalInglés
Título de la publicación alojada2019 American Control Conference, ACC 2019
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas5668-5673
Número de páginas6
ISBN (versión digital)9781538679265
DOI
EstadoPublicada - jul. 2019
Evento2019 American Control Conference, ACC 2019 - Philadelphia, Estados Unidos
Duración: 10 jul. 201912 jul. 2019

Serie de la publicación

NombreProceedings of the American Control Conference
Volumen2019-July
ISSN (versión impresa)0743-1619

Conferencia

Conferencia2019 American Control Conference, ACC 2019
País/TerritorioEstados Unidos
CiudadPhiladelphia
Período10/07/1912/07/19

Huella

Profundice en los temas de investigación de 'Evaluation of set-membership approaches for data-driven tuning of two-degree-of-freedom controllers'. En conjunto forman una huella única.

Citar esto