Emotion Assessment Based on Functional Connectivity Variability and Relevance Analysis

C. Torres-Valencia, A. Alvarez-Meza, A. Orozco-Gutierrez

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

The evaluation of emotional states has relevance in the development of systems that can automatically interact with human beings. The use of brain mapping techniques, e.g., electroencephalogram (EEG), improves the robustness of the emotion assessment methodologies in comparison to those schemes that use only audiovisual information. However, the high amount of data derived from EEG and the complex spatiotemporal relationships among channels impose several signal processing issues. Recently, functional connectivity (FC) approaches have emerged as an alternative to estimate brain connectivity patterns from EEG. Thereby, FC allows depicting the cognitive processes inside the human brain to support further brain activity discrimination stages. In this work, we propose an FC-based strategy to classify emotional states from EEG data. Our approach comprises a variability-based representation from three different FC measures, i.e., correlation, coherence, and mutual information, and a supervised kernel-based scheme to quantify the relevance of each measure. Thus, our proposal codes the inter-subject brain activity variability regarding FC representations. Obtained results on a public dataset show that the introduced strategy is competitive in comparison to state-of-the-art methods classifying arousal and valence emotional dimensional spaces.
Idioma originalInglés
Título de la publicación alojadaNatural and Artificial Computation for Biomedicine and Neuroscience
Subtítulo de la publicación alojadaInternational Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2017 Corunna, Spain, June 19–23, 2017, Proceedings, Part I
Lugar de publicaciónSpain
Páginas353–362
Volumen10337
DOI
EstadoPublicada - 27 may. 2017
Publicado de forma externa

Serie de la publicación

NombreLecture Notes in Computer Science

Huella

Profundice en los temas de investigación de 'Emotion Assessment Based on Functional Connectivity Variability and Relevance Analysis'. En conjunto forman una huella única.

Citar esto