EMG Driven Robotic-Aided Arm Rehabilitation

Daniel Bonilla, Julian D. Colorado, Med Amine Laribi, Juan Sandoval, Catalina Alvarado-Rojas

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Robotic-assisted systems have been gaining significant traction in supporting rehabilitation tasks, enabling patients to manipulate objects by using a robotic arm controlled by the means of biological signals. In this regard, electromyography (EMG) signals are key for detecting the patient’s intention of motion, that can be replicated by the robotic arm with higher accuracy and precision. In this paper, we present an integrated EMG-driven robotic system capable of performing manipulation tasks by understanding 3 hand gestures associated with certain pick and place commands. Comprehensive experimental tests were conducted to demonstrate that the proposed system can decode EMG-based commands with an accuracy 93 %, undergoing precise robotic-assisted object manipulation.

Idioma originalInglés
Título de la publicación alojadaAdvances in Service and Industrial Robotics - RAAD 2022
EditoresAndreas Müller, Mathias Brandstötter
EditorialSpringer Science and Business Media B.V.
Páginas343-350
Número de páginas8
ISBN (versión impresa)9783031048692
DOI
EstadoPublicada - 2022
Evento31st International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2022 - Klagenfurt, Austria
Duración: 08 jun. 202210 jun. 2022

Serie de la publicación

NombreMechanisms and Machine Science
Volumen120 MMS
ISSN (versión impresa)2211-0984
ISSN (versión digital)2211-0992

Conferencia

Conferencia31st International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2022
País/TerritorioAustria
CiudadKlagenfurt
Período08/06/2210/06/22

Huella

Profundice en los temas de investigación de 'EMG Driven Robotic-Aided Arm Rehabilitation'. En conjunto forman una huella única.

Citar esto