TY - GEN
T1 - EMG-based adaptive trajectory generation for an exoskeleton model during hand rehabilitation exercises
AU - Arteaga, Marya V.
AU - Castiblanco, Jenny C.
AU - Mondragon, Ivan F.
AU - Colorado, Julian D.
AU - Alvarado-Rojas, Catalina
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/11
Y1 - 2020/11
N2 - Robotic rehabilitation has been proposed as a promising alternative in recovery after stroke, which still presents many challenges. We present here an initial approach to a progressive robot-assisted hand-motion therapy. Firstly, our system identifies finger motion patterns from electromyographic (EMG) signals of 20 control volunteers during 5 hand exercises commonly used in rehabilitation. Secondly, the system characterizes 3 muscular condition levels, using muscular contraction strength, co-activation level and muscular activation level measurements. We compared the performance of Artificial Neural Networks (ANN), Support Vector Machines (SVM), Linear Discriminant Analysis Classifier (LDA) and kNearest Neighbor (k-NN) algorithms to classify the 5 gestures and 3 levels. Thirdly, each identified gesture and level was mapped into a spatial trajectory of an exoskeleton model, using a generalization of joint trajectories from subjects and a posterior interpolation. The statistical analysis between 36 different classifier architectures showed that a SVM classifier (cubic kernel) had the best performance to identify the 15 classes (F-score of 0.8 on average). Furthermore, the average correlation between the generated spatial trajectories and the tracked hand-motion was 0.89. In the future, the trajectories controlled by EMG signals could drive the exoskeleton for rehabilitation patients.
AB - Robotic rehabilitation has been proposed as a promising alternative in recovery after stroke, which still presents many challenges. We present here an initial approach to a progressive robot-assisted hand-motion therapy. Firstly, our system identifies finger motion patterns from electromyographic (EMG) signals of 20 control volunteers during 5 hand exercises commonly used in rehabilitation. Secondly, the system characterizes 3 muscular condition levels, using muscular contraction strength, co-activation level and muscular activation level measurements. We compared the performance of Artificial Neural Networks (ANN), Support Vector Machines (SVM), Linear Discriminant Analysis Classifier (LDA) and kNearest Neighbor (k-NN) algorithms to classify the 5 gestures and 3 levels. Thirdly, each identified gesture and level was mapped into a spatial trajectory of an exoskeleton model, using a generalization of joint trajectories from subjects and a posterior interpolation. The statistical analysis between 36 different classifier architectures showed that a SVM classifier (cubic kernel) had the best performance to identify the 15 classes (F-score of 0.8 on average). Furthermore, the average correlation between the generated spatial trajectories and the tracked hand-motion was 0.89. In the future, the trajectories controlled by EMG signals could drive the exoskeleton for rehabilitation patients.
UR - http://www.scopus.com/inward/record.url?scp=85095566300&partnerID=8YFLogxK
U2 - 10.1109/BioRob49111.2020.9224328
DO - 10.1109/BioRob49111.2020.9224328
M3 - Conference contribution
AN - SCOPUS:85095566300
T3 - Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
SP - 416
EP - 421
BT - 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics, BioRob 2020
PB - IEEE Computer Society
T2 - 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics, BioRob 2020
Y2 - 29 November 2020 through 1 December 2020
ER -