EMG-based adaptive trajectory generation for an exoskeleton model during hand rehabilitation exercises

Marya V. Arteaga, Jenny C. Castiblanco, Ivan F. Mondragon, Julian D. Colorado, Catalina Alvarado-Rojas

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

13 Citas (Scopus)

Resumen

Robotic rehabilitation has been proposed as a promising alternative in recovery after stroke, which still presents many challenges. We present here an initial approach to a progressive robot-assisted hand-motion therapy. Firstly, our system identifies finger motion patterns from electromyographic (EMG) signals of 20 control volunteers during 5 hand exercises commonly used in rehabilitation. Secondly, the system characterizes 3 muscular condition levels, using muscular contraction strength, co-activation level and muscular activation level measurements. We compared the performance of Artificial Neural Networks (ANN), Support Vector Machines (SVM), Linear Discriminant Analysis Classifier (LDA) and kNearest Neighbor (k-NN) algorithms to classify the 5 gestures and 3 levels. Thirdly, each identified gesture and level was mapped into a spatial trajectory of an exoskeleton model, using a generalization of joint trajectories from subjects and a posterior interpolation. The statistical analysis between 36 different classifier architectures showed that a SVM classifier (cubic kernel) had the best performance to identify the 15 classes (F-score of 0.8 on average). Furthermore, the average correlation between the generated spatial trajectories and the tracked hand-motion was 0.89. In the future, the trajectories controlled by EMG signals could drive the exoskeleton for rehabilitation patients.

Idioma originalInglés
Título de la publicación alojada2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics, BioRob 2020
EditorialIEEE Computer Society
Páginas416-421
Número de páginas6
ISBN (versión digital)9781728159072
DOI
EstadoPublicada - nov. 2020
Evento8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics, BioRob 2020 - New York City, Estados Unidos
Duración: 29 nov. 202001 dic. 2020

Serie de la publicación

NombreProceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
Volumen2020-November
ISSN (versión impresa)2155-1774

Conferencia

Conferencia8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics, BioRob 2020
País/TerritorioEstados Unidos
CiudadNew York City
Período29/11/2001/12/20

Huella

Profundice en los temas de investigación de 'EMG-based adaptive trajectory generation for an exoskeleton model during hand rehabilitation exercises'. En conjunto forman una huella única.

Citar esto