Dynamics of degree distributions of social networks

Isabel Fernandez, Kevin M. Passino, Jorge Finke

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Social network models aim to capture the complex structure of social connections. They are a framework for the design of control algorithms that take into account relationships, interactions, and communications between social actors. Based on three formation mechanisms - random attachment, triad formation, and network response - our work characterizes the dynamics of the degree distributions of social networks. In particular, we show that the complementary cumulative in- and out-degree distributions of highly clustered, reciprocal networks can be approximated by infinite dimensional time-varying linear systems. Furthermore, we determine the invariance of both limit distributions and the stability properties of the average degree.

Idioma originalInglés
Título de la publicación alojada2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas5044-5049
Número de páginas6
ISBN (versión digital)9781509028733
DOI
EstadoPublicada - 28 jun. 2017
Evento56th IEEE Annual Conference on Decision and Control, CDC 2017 - Melbourne, Australia
Duración: 12 dic. 201715 dic. 2017

Serie de la publicación

Nombre2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017
Volumen2018-January

Conferencia

Conferencia56th IEEE Annual Conference on Decision and Control, CDC 2017
País/TerritorioAustralia
CiudadMelbourne
Período12/12/1715/12/17

Huella

Profundice en los temas de investigación de 'Dynamics of degree distributions of social networks'. En conjunto forman una huella única.

Citar esto