Resumen
Many rings and algebras arising in quantum mechanics, algebraic analysis, and non-commutative algebraic geometry can be interpreted as skew PBW (Poincare- Birkhoff Witt) extensions. In the present paper we study two aspects of these non-commutative rings: their finitely generated projective modules from a matrix-constructive approach, and the construction of the Gröbner theory for their left ideals and modules. These two topics have interesting applications in functional linear systems and in non-commutative geometry.
| Idioma original | Inglés |
|---|---|
| Páginas (desde-hasta) | 1-50 |
| Número de páginas | 50 |
| Publicación | Dissertationes Mathematicae |
| Volumen | 521 |
| DOI | |
| Estado | Publicada - 2017 |
| Publicado de forma externa | Sí |