TY - JOUR
T1 - Developmental neurotoxicity of PFOA exposure on hiPSC-derived cortical neurons
AU - Wu, Shichen
AU - Xie, Junkai
AU - Zhao, Han
AU - Zhao, Xihui
AU - Sánchez, Oscar F.
AU - Rochet, Jean Christophe
AU - Freeman, Jennifer L.
AU - Yuan, Chongli
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2024/8
Y1 - 2024/8
N2 - PFOA is a legacy Per- and Polyfluorinated Substances (PFAS), a group of chemicals widely used in various industrial applications and consumer products. Although there has been a voluntary phase out of PFOA since 2005, it is still widely detected in various water supplies. A growing body of evidence suggests an association between PFOA exposure, particularly during developmental stages, with increased risks of neurodegenerative diseases (NDs). The neurotoxic mechanism of developmental PFOA exposure, however, remains poorly understood. Utilizing human induced-pluripotent stem cell (hiPSC)-derived cortical neurons, we investigated the effect of PFOA exposure prior to differentiation and assessed changes in neuronal characteristics, transcriptome, and neurodegeneration markers mimicking a Developmental Origin of Health and Disease (DoHAD) paradigm. Exposure to PFOA before neuron differentiation resulted in persistent alterations in nuclear morphology, neuronal network, and calcium activity. RNA sequencing analysis further revealed transcriptomic changes aligning with Alzheimer's Disease (AD) after PFOA exposure. These observations were further corroborated by alterations in tau phosphorylation markers, the presence of fibrillar tau, an increase in liquid droplets, and a decrease in RNA translational efficiency characterized using a battery of biochemical assays. Taken together, our results revealed persistent deficits of key neuronal characteristics induced by pre-differentiation PFOA exposure, suggesting impairments in several AD-related pathways that can together contribute to the elevation of AD risk after pre-differentiation PFOA exposure.
AB - PFOA is a legacy Per- and Polyfluorinated Substances (PFAS), a group of chemicals widely used in various industrial applications and consumer products. Although there has been a voluntary phase out of PFOA since 2005, it is still widely detected in various water supplies. A growing body of evidence suggests an association between PFOA exposure, particularly during developmental stages, with increased risks of neurodegenerative diseases (NDs). The neurotoxic mechanism of developmental PFOA exposure, however, remains poorly understood. Utilizing human induced-pluripotent stem cell (hiPSC)-derived cortical neurons, we investigated the effect of PFOA exposure prior to differentiation and assessed changes in neuronal characteristics, transcriptome, and neurodegeneration markers mimicking a Developmental Origin of Health and Disease (DoHAD) paradigm. Exposure to PFOA before neuron differentiation resulted in persistent alterations in nuclear morphology, neuronal network, and calcium activity. RNA sequencing analysis further revealed transcriptomic changes aligning with Alzheimer's Disease (AD) after PFOA exposure. These observations were further corroborated by alterations in tau phosphorylation markers, the presence of fibrillar tau, an increase in liquid droplets, and a decrease in RNA translational efficiency characterized using a battery of biochemical assays. Taken together, our results revealed persistent deficits of key neuronal characteristics induced by pre-differentiation PFOA exposure, suggesting impairments in several AD-related pathways that can together contribute to the elevation of AD risk after pre-differentiation PFOA exposure.
KW - Alzheimer's Disease
KW - hiPSC-derived cortical neurons
KW - Neurotoxicity
KW - PFAS
KW - PFOA exposure
UR - http://www.scopus.com/inward/record.url?scp=85199905377&partnerID=8YFLogxK
U2 - 10.1016/j.envint.2024.108914
DO - 10.1016/j.envint.2024.108914
M3 - Article
C2 - 39079332
AN - SCOPUS:85199905377
SN - 0160-4120
VL - 190
JO - Environment International
JF - Environment International
M1 - 108914
ER -