Development of bone targeting drugs

Molly Stapleton, Kazuki Sawamoto, Carlos J. Alméciga-Díaz, William G. Mackenzie, Robert W. Mason, Tadao Orii, Shunji Tomatsu

Producción: Contribución a una revistaArtículo de revisiónrevisión exhaustiva

91 Citas (Scopus)

Resumen

The skeletal system, comprising bones, ligaments, cartilage and their connective tissues, is critical for the structure and support of the body. Diseases that affect the skeletal system can be difficult to treat, mainly because of the avascular cartilage region. Targeting drugs to the site of action can not only increase efficacy but also reduce toxicity. Bone-targeting drugs are designed with either of two general targeting moieties, aimed at the entire skeletal system or a specific cell type. Most bone-targeting drugs utilize an affinity to hydroxyapatite, a major component of the bone matrix that includes a high concentration of positively-charged Ca2+. The strategies for designing such targeting moieties can involve synthetic and/or biological components including negatively-charged amino acid peptides or bisphosphonates. Efficient delivery of bone-specific drugs provides significant impact in the treatment of skeletal related disorders including infectious diseases (osteoarthritis, osteomyelitis, etc.), osteoporosis, and metabolic skeletal dysplasia. Despite recent advances, however, both delivering the drug to its target without losing activity and avoiding adverse local effects remain a challenge. In this review, we investigate the current development of bone-targeting moieties, their efficacy and limitations, and discuss future directions for the development of these specific targeted treatments.

Idioma originalInglés
Número de artículo1345
PublicaciónInternational Journal of Molecular Sciences
Volumen18
N.º7
DOI
EstadoPublicada - jul. 2017

Huella

Profundice en los temas de investigación de 'Development of bone targeting drugs'. En conjunto forman una huella única.

Citar esto