Detection of non-content based attacks using GA with extended KDD features

Edward Guillén, Jhordany Rodriguez, Rafael Páez, Andrea Rodriguez

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

Detection attack tools have a very wide range of solutions, from the applications of rules obtained by experience to the use of machine learning techniques, including multiple bioinspired methods. In order to analyze the results of research methods for attack detection, the DARPA KDD data set have been widely used but their data are outdated for various kinds of attacks. A software called Spleen designed to get data from a tested network with the same structure of DARPA data set is introduced. The application is used to complete the data set with additional features according to an attack analysis. In order to show advantages of an extended data set, two genetic methods in the detection of non-content based attacks are tested.

Idioma originalInglés
Título de la publicación alojadaInternational MultiConference of Engineers and Computer Scientists, IMECS 2012
EditoresJon Burgstone, S. I. Ao, Craig Douglas, W. S. Grundfest
EditorialNewswood Limited
Páginas30-35
Número de páginas6
ISBN (versión digital)9789881925169
ISBN (versión impresa)9789881925114
EstadoPublicada - 2012
Evento2012 World Congress on Engineering and Computer Science, WCECS 2012 - San Francisco, Estados Unidos
Duración: 24 oct. 201226 oct. 2012

Serie de la publicación

NombreLecture Notes in Engineering and Computer Science
Volumen1
ISSN (versión impresa)2078-0958

Conferencia

Conferencia2012 World Congress on Engineering and Computer Science, WCECS 2012
País/TerritorioEstados Unidos
CiudadSan Francisco
Período24/10/1226/10/12

Huella

Profundice en los temas de investigación de 'Detection of non-content based attacks using GA with extended KDD features'. En conjunto forman una huella única.

Citar esto