Detección de daño en vigas utilizando redes neuronales artificiales y parámetros dinámicos

Jesús D. Villalba, Ivan D. Gomez, Jose E. Later

Producción: Contribución a una revistaArtículorevisión exhaustiva

Resumen

In this paper is presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only vertical degrees of freedom were measured. The reliability of the proposed methodology is assessed from the generation of random damages scenarios and the definition of three types of errors, which can be found during the damage identification process. Results show that the methodology can reliably determine the damage scenarios. However, its application to large beams may be limited by the high computational cost of training the neural network.

Título traducido de la contribuciónDamage detection in beams by using artificial neural networks and dynamical parameters
Idioma originalEspañol
Páginas (desde-hasta)141-153
Número de páginas13
PublicaciónRevista Facultad de Ingenieria
N.º63
EstadoPublicada - jun. 2012
Publicado de forma externa

Palabras clave

  • Damage detection
  • Dynamical parameter
  • Neural networks

Huella

Profundice en los temas de investigación de 'Detección de daño en vigas utilizando redes neuronales artificiales y parámetros dinámicos'. En conjunto forman una huella única.

Citar esto