Density-dependent diffusion and refuge in a spatial Rosenzweig-MacArthur model: Stability results

Leoncio Rodriguez Q., Luis F. Gordillo

Producción: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

In this note we present a study of the solutions associated to a particular spatial extension of the Rosenzweig-MacArthur model for predator and prey. The analysis presented here shows that positive steady state solutions emerge via a transcritical bifurcation mechanism, in accordance with the insight obtained from previous numerical and analytical results. In the model under discussion, prey is assumed to move avoiding crowds via a density-dependent diffusion and also incorporates the existence of a refuge zone, where predators cannot consume prey. Saturation in prey consumption is also included through a Holling type II functional response.

Idioma originalInglés
Número de artículo126174
PublicaciónJournal of Mathematical Analysis and Applications
Volumen512
N.º2
DOI
EstadoPublicada - 15 ago. 2022

Huella

Profundice en los temas de investigación de 'Density-dependent diffusion and refuge in a spatial Rosenzweig-MacArthur model: Stability results'. En conjunto forman una huella única.

Citar esto