Defect quantification with reference-free thermal contrast and artificial neural networks

Hernán D. Benítez, Clemente Ibarra-Castanedo, Abdelhakim Bendada, Xavier Maldague, Humberto Loaiza, Eduardo Caicedo

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

7 Citas (Scopus)

Resumen

The Infrared Nondestructive Testing (IRNT) methods based on thermal contrast are strongly affected by non-uniform heating at the surface. Hence, the results obtained from these methods considerably depend on the chosen reference point. One of these methods is Artificial Neural Networks (ANN) that uses thermal contrast curves as input data for training and test in order to detect and estimate defect depth. The Differential Absolute Contrast (DAC) has been successfully used as an alternative thermal contrast to eliminate the need of a reference point by defining the thermal contrast with respect to an ideal sound area. The DAC technique has been proven effective to inspect materials at early times since it is based on the ID solution of the Fourier equation. A modified DAC version using thermal quadrupoles explicitly includes the sample thickness in the solution, extending in this way the range of validity when the heat front approaches the sample rear face. We propose to use ANN to detect and quantify defects in composite materials using data extracted from the modified DAC with thermal quadrupoles in order to decrease the non-uniform heating and plate shape impact on the inspection.

Idioma originalInglés
Título de la publicación alojadaThermosense XXIX
DOI
EstadoPublicada - 2007
Publicado de forma externa
EventoThermosense XXIX - Orlando. FL, Estados Unidos
Duración: 09 abr. 200712 abr. 2007

Serie de la publicación

NombreProceedings of SPIE - The International Society for Optical Engineering
Volumen6541
ISSN (versión impresa)0277-786X

Conferencia

ConferenciaThermosense XXIX
País/TerritorioEstados Unidos
CiudadOrlando. FL
Período09/04/0712/04/07

Huella

Profundice en los temas de investigación de 'Defect quantification with reference-free thermal contrast and artificial neural networks'. En conjunto forman una huella única.

Citar esto