Defect characterization in infrared non-destructive testing with learning machines

Hernán D. Benítez, Humberto Loaiza, Eduardo Caicedo, Clemente Ibarra-Castanedo, Abdel Hakim Bendada, Xavier Maldague

Producción: Contribución a una revistaArtículorevisión exhaustiva

35 Citas (Scopus)

Resumen

It is well known that thermal contrast-based quantification methods are strongly affected by the non-uniform heating, the sample shape and the chosen sound area. In this work we propose a reference-free thermal contrast by using the thermal quadrupoles theory and evaluate the limits of defect detection in composite samples by using dynamic principal components analysis (DPCA) and k-nearest neighbor algorithm. Additionally, we propose and validate the radial basis functions (RBF) networks and support vector machines (SVM) for the detection and quantification of defect depth in composite material samples affected by non-uniform heating and with complex shapes.

Idioma originalInglés
Páginas (desde-hasta)630-643
Número de páginas14
PublicaciónNDT and E International
Volumen42
N.º7
DOI
EstadoPublicada - oct. 2009

Huella

Profundice en los temas de investigación de 'Defect characterization in infrared non-destructive testing with learning machines'. En conjunto forman una huella única.

Citar esto