Deep Learning for Safe Human-Robot Collaboration

Nicolás Duque-Suárez, Lina María Amaya-Mejía, Carol Martinez, Daniel Jaramillo-Ramirez

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Recent advances in computer vision and deep learning have lead to implementations in different industrial applications such as collaborative robotics, making robots able to perform harder tasks and giving them consciousness of their environment, easing interaction with humans. With the objective of eliminating physical barriers between humans and robots, a security system for industrial collaborative robots based on computer vision and deep learning is proposed, where an RGBD camera is used to detect and track people located inside the robot’s workspace. Detection is made with a previously trained convolutional neural network. The position of every detection is fed to the tracker, that identifies the subjects in scene and keeps record of them in case the detector fails. The detected subject’s 3D position and height are represented in a simulation of the workspace, where the robot’s speed changes depending on its distance to the manipulator following international safety guidelines. This paper shows the implementation of the detector and tracker algorithms, the subject’s 3D position, the security zones definition and the integration of the vision system with the robot and workspace. Results show the system’s ability to detect and track subjects in scene, and the robot’s capacity to change its speed depending on the subject’s location.

Idioma originalInglés
Título de la publicación alojadaAdvances in Automation and Robotics Research - Proceedings of the 3rd Latin American Congress on Automation and Robotics, LACAR 2021
EditoresHéctor A. Moreno, Isela G. Carrera, Ricardo A. Ramírez-Mendoza, José Baca, Ilka A. Banfield
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas239-251
Número de páginas13
ISBN (versión impresa)9783030900328
DOI
EstadoPublicada - 2022
Evento3rd Latin American Congress on Automation and Robotics, LACAR 2021 - Virtual, Online
Duración: 17 nov. 202119 nov. 2021

Serie de la publicación

NombreLecture Notes in Networks and Systems
Volumen347 LNNS
ISSN (versión impresa)2367-3370
ISSN (versión digital)2367-3389

Conferencia

Conferencia3rd Latin American Congress on Automation and Robotics, LACAR 2021
CiudadVirtual, Online
Período17/11/2119/11/21

Huella

Profundice en los temas de investigación de 'Deep Learning for Safe Human-Robot Collaboration'. En conjunto forman una huella única.

Citar esto