Cyclic and BCH codes whose minimum distance equals their maximum BCH bound

José Joaquín Bernal, Diana H. Bueno-Carreño, Juan Jacobo Simón

Producción: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

In this paper we study the family of cyclic codes such that its minimum distance reaches the maximum of its BCH bounds. We also show a way to construct cyclic codes with that property by means of computations of some divisors of a polynomial of the form xn - 1. We apply our results to the study of those BCH codes C, with designed distance δ, that have minimum distance d(C) = δ. Finally, we present some examples of new binary BCH codes satisfying that condition. To do this, we make use of two related tools: the discrete Fourier transform and the notion of apparent distance of a code, originally defined for multivariate abelian codes.

Idioma originalInglés
Páginas (desde-hasta)459-474
Número de páginas16
PublicaciónAdvances in Mathematics of Communications
Volumen10
N.º2
DOI
EstadoPublicada - may. 2016

Huella

Profundice en los temas de investigación de 'Cyclic and BCH codes whose minimum distance equals their maximum BCH bound'. En conjunto forman una huella única.

Citar esto