Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity

Edwin Gonzalo Murcia, Gaetano Siciliano

Producción: Contribución a una revistaArtículorevisión exhaustiva

13 Citas (Scopus)

Resumen

In this paper we consider the following Schrödinger–Poisson system in the whole R3, {−Δu+u+λϕu=f(u) in R3,−Δϕ=u2 in R3, where λ>0 and the nonlinearity f is “asymptotically cubic” at infinity. This implies that the nonlocal term ϕu and the nonlinear term f(u) are, in some sense, in a strict competition. We show that the system admits a least energy sign-changing and radial solution obtained by minimizing the energy functional on the so-called nodal Nehari set.

Idioma originalInglés
Páginas (desde-hasta)544-571
Número de páginas28
PublicaciónJournal of Mathematical Analysis and Applications
Volumen474
N.º1
DOI
EstadoPublicada - 01 jun. 2019

Huella

Profundice en los temas de investigación de 'Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity'. En conjunto forman una huella única.

Citar esto