Convolved Multi-output Gaussian processes for Semi-Supervised Learning

Hernán Darío Vargas Cardona, Mauricio A. Álvarez, Álvaro A. Orozco

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

Multi-output learning has become in a strong field of research in machine learning community during the last years. This setup considers the occurrence of multiple and related tasks in real-world problems. Another approach called semi-supervised learning (SSL) is the middle point between the case where all training samples are labeled (supervised learning) and the case where all training samples are unlabeled (unsupervised learning). In many applications it is difficult or impossible to access to fully labeled data. At these scenarios, SSL becomes a very useful methodology to achieve successful results, either for regression or for classification. In this paper, we propose the use of kernels for vector-valued functions for Gaussian process multi-output regression in the context of semi-supervised learning. We combine a Gaussian process with process convolution (PC) type of covariance function with techniques commonly used in semi-supervised learning like the Expectation-Maximization (EM) algorithm, and Graph-based regularization.We test our proposed method in two widely used databases formulti-output regression. Results obtained by our method exhibit a better performance compared to supervised methods based on Gaussian processes in scenarios where there are not available a good amount of labeled data.

Idioma originalInglés
Título de la publicación alojadaImage Analysis and Processing – ICIAP 2015 - 18th International Conference, Proceedings
EditoresVittorio Murino, Enrico Puppo, Vittorio Murino
EditorialSpringer Verlag
Páginas109-118
Número de páginas10
ISBN (versión impresa)9783319232300
DOI
EstadoPublicada - 2015
Publicado de forma externa
Evento18th International Conference on Image Analysis and Processing, ICIAP 2015 - Genoa, Italia
Duración: 07 sep. 201511 sep. 2015

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen9279
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia18th International Conference on Image Analysis and Processing, ICIAP 2015
País/TerritorioItalia
CiudadGenoa
Período07/09/1511/09/15

Huella

Profundice en los temas de investigación de 'Convolved Multi-output Gaussian processes for Semi-Supervised Learning'. En conjunto forman una huella única.

Citar esto