Community-Based Event Detection in Temporal Networks

Pablo Moriano, Jorge Finke, Yong Yeol Ahn

Producción: Contribución a una revistaArtículorevisión exhaustiva

17 Citas (Scopus)

Resumen

We propose a method for detecting large events based on the structure of temporal communication networks. Our method is motivated by findings that viral information spreading has distinct diffusion patterns with respect to community structure. Namely, we hypothesize that global events trigger viral information cascades that easily cross community boundaries and can thus be detected by monitoring intra- and inter-community communications. By comparing the amount of communication within and across communities, we show that it is possible to detect events, even when they do not trigger a significantly larger communication volume. We demonstrate the effectiveness of our method using two examples—the email communication network of Enron and the Twitter communication network during the Boston Marathon bombing.

Idioma originalInglés
Número de artículo4358
PublicaciónScientific Reports
Volumen9
N.º1
DOI
EstadoPublicada - 01 dic. 2019

Huella

Profundice en los temas de investigación de 'Community-Based Event Detection in Temporal Networks'. En conjunto forman una huella única.

Citar esto