Client-side hybrid rating prediction for recommendation

Andrés Moreno, Harold Castro, Michel Riveill

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The centralized gathering and processing of user information made by traditional recommender systems can lead to user information exposure, violating her privacy. Client-side personalization methods have been created as a mean for avoiding privacy risks. Motivated by limiting the exposure of user private information, we explore the use of a clientside hybrid recommender system placed on the online learning setting. We propose a prediction model based on an ensemble blender of an online matrix factorization CF model and a logistic regression model trained on item metadata with a probabilistic feature inclusion strategy. The final prediction is a blend of the two models on a weighted regret approach. We validate our approach with the Movielens 10M dataset.

Idioma originalInglés
Título de la publicación alojadaUser Modeling, Adaptation, and Personalization - 22nd International Conference, UMAP 2014, Proceedings
EditoresVania Dimitrova, Tsvi Kuflik, David Chin, Francesco Ricci, Peter Dolog, Geert-Jan Houben
EditorialSpringer Verlag
Páginas369-380
Número de páginas12
ISBN (versión digital)9783319087856
DOI
EstadoPublicada - 2014
Publicado de forma externa
Evento22nd International Conference on User Modeling, Adaptation, and Personalization, UMAP 2014 - Aalborg, Países Bajos
Duración: 07 jul. 201411 jul. 2014

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen8538
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia22nd International Conference on User Modeling, Adaptation, and Personalization, UMAP 2014
País/TerritorioPaíses Bajos
CiudadAalborg
Período07/07/1411/07/14

Huella

Profundice en los temas de investigación de 'Client-side hybrid rating prediction for recommendation'. En conjunto forman una huella única.

Citar esto