Characterizing right inverses for spatial constraint systems with applications to modal logic

Michell Guzmán, Salim Perchy, Camilo Rueda, Frank D. Valencia

Producción: Contribución a una revistaArtículorevisión exhaustiva

4 Citas (Scopus)

Resumen

Spatial constraint systems are algebraic structures from concurrent constraint programming to specify spatial and epistemic behavior in multi-agent systems. In this paper spatial constraint systems are used to give an abstract characterization of the notion of normality in modal logic and to derive right inverse/reverse operators for modal languages. In particular, a necessary and sufficient condition for the existence of right inverses is identified and the abstract notion of normality is shown to correspond to the preservation of finite suprema. Furthermore, a taxonomy of normal right inverses is provided, identifying the greatest normal right inverse as well as the complete family of minimal right inverses. These results are applied to existing modal languages such as the weakest normal modal logic, Hennessy–Milner logic, and linear-time temporal logic. Some implications of these results are also discussed in the context of modal concepts such as bisimilarity and inconsistency invariance.

Idioma originalInglés
Páginas (desde-hasta)56-77
Número de páginas22
PublicaciónTheoretical Computer Science
Volumen744
DOI
EstadoPublicada - 05 oct. 2018

Huella

Profundice en los temas de investigación de 'Characterizing right inverses for spatial constraint systems with applications to modal logic'. En conjunto forman una huella única.

Citar esto