BLUE NOISE SAMPLING AND NYSTRÖM EXTENSION FOR GRAPH BASED CHANGE DETECTION

David Alejandro Jimenez-Sierra, Hernán Darío Benítez-Restrepo, Gonzalo R. Arce, Juan F. Florez-Ospina

Producción: Contribución a una conferenciaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

In this paper, we address the problem of sampling on graphs for change detection in large multi-spectral (MS) and synthetic aperture radar (SAR) images by proposing a graphbased data-driven framework. The main steps of the proposed approach are: (i) the segmentation of regions that enclose the change; (ii) the use of smoothness prior for learning a graph of the regions; (iii) the integration of blue-noise sampling (BN) in the change detection scheme. We validate our approach in 14 real cases of remote sensing according to quantitative analyses. The results confirm that using a structured sampling such as BN outperforms recent state-of-the-art methods in change detection for multimodal data.

Idioma originalInglés
Páginas2895-2898
Número de páginas4
DOI
EstadoPublicada - 2021
Evento2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021 - Brussels, Bélgica
Duración: 12 jul. 202116 jul. 2021

Conferencia

Conferencia2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021
País/TerritorioBélgica
CiudadBrussels
Período12/07/2116/07/21

Huella

Profundice en los temas de investigación de 'BLUE NOISE SAMPLING AND NYSTRÖM EXTENSION FOR GRAPH BASED CHANGE DETECTION'. En conjunto forman una huella única.

Citar esto