Big Data from Space for Precision Agriculture Applications

F. Bovolo, L. Bruzzone, D. Fernández-Prieto, C. Paris, Y. T. Solano-Correa, E. Volden, M. Zanetti

Producción: Contribución a una revistaArtículo de la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

This paper presents an approach for precision agriculture large scale applications based on the analysis of big data consisting in Satellite Image Time Series (SITS) acquired by ESA Sentinel-2 (S2) satellite constellation. The approach has been developed in the framework of the ESA SEOM - Scientific Exploitation of Operational Missions - S2-4Sci Land and Water project [1]. To focus only on agricultural areas, images are first filtered based on a land cover (LC) map that is generated by updating available old maps by means of recent images. Then S2 SITS are used to analyse agricultural areas. Two macro challenges are therefore considered: (i) automatic update of LC maps and generation of agricultural areas mask; and (ii) unsupervised multi-temporal (MT) fine characterization of land plots.

Idioma originalInglés
Número de artículo012004
PublicaciónIOP Conference Series: Earth and Environmental Science
Volumen509
N.º1
DOI
EstadoPublicada - 09 jul. 2020
Publicado de forma externa
Evento11th International Symposium on Digital Earth, ISDE 2019 - Florence, Italia
Duración: 24 sep. 201927 sep. 2019

Huella

Profundice en los temas de investigación de 'Big Data from Space for Precision Agriculture Applications'. En conjunto forman una huella única.

Citar esto