Bag of features for automatic classification of Alzheimer's disease in magnetic resonance images

Andrea Rueda, John Arevalo, Angel Cruz, Eduardo Romero, Fabio A. González

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

24 Citas (Scopus)

Resumen

The goal of this paper is to evaluate the suitability of a bag-of-feature representation for automatic classification of Alzheimer's disease brain magnetic resonance (MR) images. The evaluated method uses a bag-of-features (BOF) to represent the MR images, which are then fed to a support vector machine, which has been trained to distinguish between normal control and Alzheimer's disease. The method was applied to a set of images from the OASIS data set. An exhaustive exploration of different BOF parameters was performed, i.e. feature extraction, dictionary construction and classification model. The experimental results show that the evaluated method reaches competitive performance in terms of accuracy, sensibility and specificity. In particular, the method based on a BOF representation outperforms the best published result in this data set improving the equal error classification rate in about 10% (0.80 to 0.95 for Group 1 and 0.71 to 0.81 for Group 2).

Idioma originalInglés
Título de la publicación alojadaProgress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - 17th Iberoamerican Congress, CIARP 2012, Proceedings
Páginas559-566
Número de páginas8
DOI
EstadoPublicada - 2012
Publicado de forma externa
Evento17th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2012 - Buenos Aires, Argentina
Duración: 03 sep. 201206 sep. 2012

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen7441 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia17th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2012
País/TerritorioArgentina
CiudadBuenos Aires
Período03/09/1206/09/12

Huella

Profundice en los temas de investigación de 'Bag of features for automatic classification of Alzheimer's disease in magnetic resonance images'. En conjunto forman una huella única.

Citar esto