Automatic diagnosis of acute coronary syndrome using a multi-agent system based in neural networks

Título traducido de la contribución: Diagnóstico automático del síndrome coronario agudo utilizando un sistema multiagente basado en redes neuronales

John Jaime Sprockel Díaz, Juan José Diaztagle Fernández, Enrique González Guerrero

Producción: Contribución a una revistaArtículorevisión exhaustiva

4 Citas (Scopus)

Resumen

Introduction Because it is a highly complex task of a great clinical importance, the diagnosis of acute coronary syndromes allows for their analysis by means of intelligent system models. Motivation To develop a multi-agent system that assembles the decisions of several neural networks for the diagnosis of chest pain with a focus on acute coronary syndromes. Methods A study of diagnostic tests where a series of neural networks are trained with a precision close to 70%, and are later on assembled with three voting systems. Then the results of special networks on specific populations are added to select the best configuration that will make part of a multi-agent system for diagnosing chest pain. Results A total of 84 networks were generated, with an average precision of 72% during testing; once assembled this precision rises up to a maximum of 84%, which then reaches 89% when the special groups are included. A configuration that offers a sensitivity of 96% with a specificity of 77% and positive and negative predictive values of 87 and 93% respectively is chosen for the diagnosis of acute coronary syndrome. Conclusions It is possible to develop a tool for the automatic diagnosis of acute coronary syndrome using a multi-agent system that assembles the dispositions taken by a set of artificial neural networks. Its performance allows taking it into consideration for implementing it within a clinical decision-making support system.

Título traducido de la contribuciónDiagnóstico automático del síndrome coronario agudo utilizando un sistema multiagente basado en redes neuronales
Idioma originalInglés
Páginas (desde-hasta)255-260
Número de páginas6
PublicaciónRevista Colombiana de Cardiologia
Volumen24
N.º3
DOI
EstadoPublicada - 01 may. 2017

Huella

Profundice en los temas de investigación de 'Diagnóstico automático del síndrome coronario agudo utilizando un sistema multiagente basado en redes neuronales'. En conjunto forman una huella única.

Citar esto