TY - JOUR
T1 - Association of recreational cannabis laws in Colorado and Washington state with changes in traffic fatalities, 2005-2017
AU - Santaella-Tenorio, Julian
AU - Wheeler-Martin, Katherine
AU - Dimaggio, Charles J.
AU - Castillo-Carniglia, Alvaro
AU - Keyes, Katherine M.
AU - Hasin, Deborah
AU - Cerdá, Magdalena
N1 - Publisher Copyright:
© 2020 American Medical Association. All rights reserved.
PY - 2020/8
Y1 - 2020/8
N2 - Importance: An important consequence of cannabis legalization is the potential increase in the number of cannabis-impaired drivers on roads, which may result in higher rates of traffic-related injuries and fatalities. To date, limited information about the effects of recreational cannabis laws (RCLs) on traffic fatalities is available. Objective: To estimate the extent to which the implementation of RCLs is associated with traffic fatalities in Colorado and Washington State. Design, Setting, and Participants: This ecological study used a synthetic control approach to examine the association between RCLs and changes in traffic fatalities in Colorado and Washington State in the post-RCL period (2014-2017). Traffic fatalities data were obtained from the Fatality Analysis Reporting System from January 1, 2005, to December 31, 2017. Data from Colorado and Washington State were compared with synthetic controls. Data were analyzed from January 1, 2005, to December 31, 2017. Main Outcome(s) and Measures: The primary outcome was the rate of traffic fatalities. Sensitivity analyses were performed (1) excluding neighboring states, (2) excluding states without medical cannabis laws (MCLs), and (3) using the enactment date of RCLs to define pre-RCL and post-RCL periods instead of the effective date. Results: Implementation of RCLs was associated with increases in traffic fatalities in Colorado but not in Washington State. The difference between Colorado and its synthetic control in the post-RCL period was 1.46 deaths per 1 billion vehicle miles traveled (VMT) per year (an estimated equivalent of 75 excess fatalities per year; probability = 0.047). The difference between Washington State and its synthetic control was 0.08 deaths per 1 billion VMT per year (probability = 0.674). Results were robust in most sensitivity analyses. The difference between Colorado and synthetic Colorado was 1.84 fatalities per 1 billion VMT per year (94 excess deaths per year; probability = 0.055) after excluding neighboring states and 2.16 fatalities per 1 billion VMT per year (111 excess deaths per year; probability = 0.063) after excluding states without MCLs. The effect was smaller when using the enactment date (24 excess deaths per year; probability = 0.116). Conclusions and Relevance: This study found evidence of an increase in traffic fatalities after the implementation of RCLs in Colorado but not in Washington State. Differences in how RCLs were implemented (eg, density of recreational cannabis stores), out-of-state cannabis tourism, and local factors may explain the different results. These findings highlight the importance of RCLs as a factor that may increase traffic fatalities and call for the identification of policies and enforcement strategies that can help prevent unintended consequences of cannabis legalization..
AB - Importance: An important consequence of cannabis legalization is the potential increase in the number of cannabis-impaired drivers on roads, which may result in higher rates of traffic-related injuries and fatalities. To date, limited information about the effects of recreational cannabis laws (RCLs) on traffic fatalities is available. Objective: To estimate the extent to which the implementation of RCLs is associated with traffic fatalities in Colorado and Washington State. Design, Setting, and Participants: This ecological study used a synthetic control approach to examine the association between RCLs and changes in traffic fatalities in Colorado and Washington State in the post-RCL period (2014-2017). Traffic fatalities data were obtained from the Fatality Analysis Reporting System from January 1, 2005, to December 31, 2017. Data from Colorado and Washington State were compared with synthetic controls. Data were analyzed from January 1, 2005, to December 31, 2017. Main Outcome(s) and Measures: The primary outcome was the rate of traffic fatalities. Sensitivity analyses were performed (1) excluding neighboring states, (2) excluding states without medical cannabis laws (MCLs), and (3) using the enactment date of RCLs to define pre-RCL and post-RCL periods instead of the effective date. Results: Implementation of RCLs was associated with increases in traffic fatalities in Colorado but not in Washington State. The difference between Colorado and its synthetic control in the post-RCL period was 1.46 deaths per 1 billion vehicle miles traveled (VMT) per year (an estimated equivalent of 75 excess fatalities per year; probability = 0.047). The difference between Washington State and its synthetic control was 0.08 deaths per 1 billion VMT per year (probability = 0.674). Results were robust in most sensitivity analyses. The difference between Colorado and synthetic Colorado was 1.84 fatalities per 1 billion VMT per year (94 excess deaths per year; probability = 0.055) after excluding neighboring states and 2.16 fatalities per 1 billion VMT per year (111 excess deaths per year; probability = 0.063) after excluding states without MCLs. The effect was smaller when using the enactment date (24 excess deaths per year; probability = 0.116). Conclusions and Relevance: This study found evidence of an increase in traffic fatalities after the implementation of RCLs in Colorado but not in Washington State. Differences in how RCLs were implemented (eg, density of recreational cannabis stores), out-of-state cannabis tourism, and local factors may explain the different results. These findings highlight the importance of RCLs as a factor that may increase traffic fatalities and call for the identification of policies and enforcement strategies that can help prevent unintended consequences of cannabis legalization..
UR - http://www.scopus.com/inward/record.url?scp=85086851448&partnerID=8YFLogxK
U2 - 10.1001/jamainternmed.2020.1757
DO - 10.1001/jamainternmed.2020.1757
M3 - Article
C2 - 32568378
AN - SCOPUS:85086851448
SN - 2168-6106
VL - 180
SP - 1061
EP - 1068
JO - JAMA internal medicine
JF - JAMA internal medicine
IS - 8
ER -