Artificial neural networks to represent the attenuation of seismic intensity

Título traducido de la contribución: Redes neuronales artificiales para representar la atenuación de la intensidad sísmica

Producción: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

The study of seismic intensity attenuation plays an important role in the analysis of menace that includes historical events. Mapping the intensity attenuation is usually done by regressing the intensity versus distance. Nowadays there are different ways to examine the characteristics of a seismic event using instrumental means, however, the experts face the problem of qualitative nature of the sources of information and the mapping of the relationship between intensity, magnitude and distance for the generation of risk scenarios based on historical information. This paper presents an alternative to map this relationship through artificial neural networks (ANN). As a result, we propose a procedure that was validated through the mapping of the intensities of 68 earthquakes that occurred northern South America, between 1766 and 2004. We found that ANNs present advantages with respect to the conventional models of regression: a. they preserve in a better way the first statistical moment, b. they reflect a minor approximation error and c. the variance explained by the ANN is better than the one from the models of statistical regression.

Título traducido de la contribuciónRedes neuronales artificiales para representar la atenuación de la intensidad sísmica
Idioma originalInglés
Páginas (desde-hasta)277-292
Número de páginas16
PublicaciónIngenieria y Universidad
Volumen17
N.º2
EstadoPublicada - 2013

Huella

Profundice en los temas de investigación de 'Redes neuronales artificiales para representar la atenuación de la intensidad sísmica'. En conjunto forman una huella única.

Citar esto