TY - JOUR
T1 - Application of Kernel Principal Component Analysis for Single-Lead-ECG-Derived Respiration
AU - Widjaja, Devy
AU - Varon, Carolina
AU - Caicedo Dorado, Alexander
AU - Suykens, Johan A.K.
AU - Van Huffel, Sabine
PY - 2012
Y1 - 2012
N2 - Recent studies show that principal component analysis (PCA) of heartbeats is a well-performing method to derive a respiratory signal from ECGs. In this study, an improved ECG-derived respiration (EDR) algorithm based on kernel PCA (kPCA) is presented. KPCA can be seen as a generalization of PCA where nonlinearities in the data are taken into account by nonlinear mapping of the data, using a kernel function, into a higher dimensional space in which PCA is carried out. The comparison of several kernels suggests that a radial basis function (RBF) kernel performs the best when deriving EDR signals. Further improvement is carried out by tuning the parameter σ 2 that represents the variance of the RBF kernel. The performance of kPCA is assessed by comparing the EDR signals to a reference respiratory signal, using the correlation and the magnitude squared coherence coefficients. When comparing the coefficients of the tuned EDR signals using kPCA to EDR signals obtained using PCA and the algorithm based on the R peak amplitude, statistically significant differences are found in the correlation and coherence coefficients (both p < 0.0001), showing that kPCA outperforms PCA and R peak amplitude in the extraction of a respiratory signal from single-lead ECGs.
AB - Recent studies show that principal component analysis (PCA) of heartbeats is a well-performing method to derive a respiratory signal from ECGs. In this study, an improved ECG-derived respiration (EDR) algorithm based on kernel PCA (kPCA) is presented. KPCA can be seen as a generalization of PCA where nonlinearities in the data are taken into account by nonlinear mapping of the data, using a kernel function, into a higher dimensional space in which PCA is carried out. The comparison of several kernels suggests that a radial basis function (RBF) kernel performs the best when deriving EDR signals. Further improvement is carried out by tuning the parameter σ 2 that represents the variance of the RBF kernel. The performance of kPCA is assessed by comparing the EDR signals to a reference respiratory signal, using the correlation and the magnitude squared coherence coefficients. When comparing the coefficients of the tuned EDR signals using kPCA to EDR signals obtained using PCA and the algorithm based on the R peak amplitude, statistically significant differences are found in the correlation and coherence coefficients (both p < 0.0001), showing that kPCA outperforms PCA and R peak amplitude in the extraction of a respiratory signal from single-lead ECGs.
U2 - 10.1109/TBME.2012.2186448
DO - 10.1109/TBME.2012.2186448
M3 - Article
SN - 0018-9294
VL - 59
SP - 1169
EP - 1176
JO - IEEE Transactions on Biomedical Engineering
JF - IEEE Transactions on Biomedical Engineering
IS - 4
ER -