An improved ECG-derived respiration method using kernel principal component analysis

Devy Widjaja, Carolina Varon, Alexander Caicedo Dorado, Sabine Van Huffel

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

7 Citas (Scopus)

Resumen

Recent studies show that principal component analysis (PCA) of heart beats generates well-performing ECG-derived respiratory signals (EDR). This study aims at improving the performance of EDR signals using kernel PCA (kPCA). Kernel PCA is a generalization of PCA where nonlinearities in the data are taken into account for the decomposition. The performance of PCA and kPCA is evaluated by comparing the EDR signals to the reference respiratory signal. Correlation coefficients of 0.630 ± 0.189 and 0.675 ± 0.163, and magnitude squared coherence coefficients at respiratory frequency of 0.819 ± 0.229 and 0.894 ± 0.139 were obtained for PCA and kPCA respectively. The Wilcoxon signed rank test showed statistically significantly higher coefficients for kPCA than for PCA for both the correlation (p = 0.0257) and coherence (p = 0.0030) coefficients. To conclude, kPCA proves to outperform PCA in the extraction of a respiratory signal from single lead ECGs.

Idioma originalInglés
Título de la publicación alojadaComputing in Cardiology 2011, CinC 2011
Páginas45-48
Número de páginas4
EstadoPublicada - 2011
Publicado de forma externa
EventoComputing in Cardiology 2011, CinC 2011 - Hangzhou, China
Duración: 18 sep. 201121 sep. 2011

Serie de la publicación

NombreComputing in Cardiology
Volumen38
ISSN (versión impresa)2325-8861
ISSN (versión digital)2325-887X

Conferencia

ConferenciaComputing in Cardiology 2011, CinC 2011
País/TerritorioChina
CiudadHangzhou
Período18/09/1121/09/11

Huella

Profundice en los temas de investigación de 'An improved ECG-derived respiration method using kernel principal component analysis'. En conjunto forman una huella única.

Citar esto