An approach to multiple Change Detection in multisensor VHR optical images based on iterative clustering

Yady Tatiana Solano-Correa, Francesca Bovolo, Lorenzo Bruzzone

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

6 Citas (Scopus)

Resumen

When dealing with optical images, the most common approach to unsupervised change detection is Change Vector Analysis (CVA) which computes the multispectral difference image and exploits its statistical distribution in (hyper-)spherical coordinates. The latter step usually requires assumptions on both the model of class distributions and the number of changes. However, both assumptions are seldom satisfied especially when multisensor VHR images are considered. Thus, we propose an approach to multiple change detection in multisensor VHR optical images based on iterative clustering in (hyper-) spherical coordinate. The proposed approach is distribution free, unsupervised and automatically identifies the number of changes. Results obtained on a multitemporal and multisensor dataset including images from WorldView-2 and QuickBird are promising.

Idioma originalInglés
Título de la publicación alojada2016 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas5149-5152
Número de páginas4
ISBN (versión digital)9781509033324
DOI
EstadoPublicada - 01 nov. 2016
Publicado de forma externa
Evento36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016 - Beijing, China
Duración: 10 jul. 201615 jul. 2016

Serie de la publicación

NombreInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volumen2016-November

Conferencia

Conferencia36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016
País/TerritorioChina
CiudadBeijing
Período10/07/1615/07/16

Huella

Profundice en los temas de investigación de 'An approach to multiple Change Detection in multisensor VHR optical images based on iterative clustering'. En conjunto forman una huella única.

Citar esto