TY - JOUR
T1 - An adaptive genetic algorithm for a dynamic single-machine scheduling problem
AU - Jimenez, Jose Fernando
AU - Gonzalez-Neira, Eliana
AU - Zambrano-Rey, Gabriel
N1 - Publisher Copyright:
© 2018 by the authors; licensee Growing Science, Canada.
PY - 2018
Y1 - 2018
N2 - Nowadays, industries cope with a wide range of situations and/or perturbations that endanger the manufacturing productivity. Traditionally, manufacturing control systems are responsible for managing the manufacturing scheduling and execution, as these have the capability of maintaining the production operations regardless of a given perturbation. Still, the challenge of these systems is to achieve an optimal performance after the perturbations occur. For this reason, manufacturing control systems must incorporate a mechanism with intelligent capabilities to look for optimal performance and operation reactivity regardless of any scenario. This paper proposes a generic control strategy for a manufacturing control system for piloting the execution of a dynamic scheduling problem, considering a new job arrival as the manufacturing perturbation. The study explores a predictive-reactive approach that couples a genetic algorithm for the predictive scheduling and an adaptive genetic algorithm for reactivity control aiming to minimize the weighted tardiness in a dynamic manufacturing scenario. The results obtained from this proposal verify that the effectiveness was improved by using adaptive metaheuristic in a dynamic scheduling problem, considering absorbing the degradation caused by the perturbation.
AB - Nowadays, industries cope with a wide range of situations and/or perturbations that endanger the manufacturing productivity. Traditionally, manufacturing control systems are responsible for managing the manufacturing scheduling and execution, as these have the capability of maintaining the production operations regardless of a given perturbation. Still, the challenge of these systems is to achieve an optimal performance after the perturbations occur. For this reason, manufacturing control systems must incorporate a mechanism with intelligent capabilities to look for optimal performance and operation reactivity regardless of any scenario. This paper proposes a generic control strategy for a manufacturing control system for piloting the execution of a dynamic scheduling problem, considering a new job arrival as the manufacturing perturbation. The study explores a predictive-reactive approach that couples a genetic algorithm for the predictive scheduling and an adaptive genetic algorithm for reactivity control aiming to minimize the weighted tardiness in a dynamic manufacturing scenario. The results obtained from this proposal verify that the effectiveness was improved by using adaptive metaheuristic in a dynamic scheduling problem, considering absorbing the degradation caused by the perturbation.
KW - Adaptive genetic algorithm
KW - Dynamic scheduling
KW - Manufacturing control
KW - Optimality
KW - Predictive-reactive
KW - Reactivity
UR - http://www.scopus.com/inward/record.url?scp=85053371877&partnerID=8YFLogxK
U2 - 10.5267/j.msl.2018.8.011
DO - 10.5267/j.msl.2018.8.011
M3 - Article
AN - SCOPUS:85053371877
SN - 1923-9335
VL - 8
SP - 1117
EP - 1132
JO - Management Science Letters
JF - Management Science Letters
IS - 11
ER -