TY - JOUR
T1 - Alpha tubulin genes from Leishmania braziliensis
T2 - Genomic organization, gene structure and insights on their expression
AU - Ramírez, César A.
AU - Requena, José M.
AU - Puerta, Concepción J.
N1 - Funding Information:
CJP´s lab was supported by Pontificia Universidad Javeriana (Colombia), Research project ID PPTA 00003780. JMR’s lab was supported by grants from the Ministerio de Ciencia y Tecnología (BFU2009-08986) and the Fondo de Investigaciones Sanitarias (ISCIII-RETIC RD12/0018/0009-FEDER). CAR was supported by Colciencias, Programa Nacional de Doctorados, convocatoria 2008.
PY - 2013/7/6
Y1 - 2013/7/6
N2 - Background: Alpha tubulin is a fundamental component of the cytoskeleton which is responsible for cell shape and is involved in cell division, ciliary and flagellar motility and intracellular transport. Alpha tubulin gene expression varies according to the morphological changes suffered by Leishmania in its life cycle. However, the objective of studying the mechanisms responsible for the differential expression has resulted to be a difficult task due to the complex genome organization of tubulin genes and to the non-conventional mechanisms of gene regulation operating in Leishmania.Results: We started this work by analyzing the genomic organization of α-tubulin genes in the Leishmania braziliensis genome database. The genomic organization of L. braziliensis α-tubulin genes differs from that existing in the L. major and L. infantum genomes. Two loci containing α-tubulin genes were found in the chromosomes 13 and 29, even though the existence of sequence gaps does not allow knowing the exact number of genes at each locus. Southern blot assays showed that α-tubulin locus at chromosome 13 contains at least 8 gene copies, which are tandemly organized with a 2.08-kb repetition unit; the locus at chromosome 29 seems to contain a sole α-tubulin gene. In addition, it was found that L. braziliensis α-tubulin locus at chromosome 13 contains two types of α-tubulin genes differing in their 3′ UTR, each one presumably containing different regulatory motifs. It was also determined that the mRNA expression levels of these genes are controlled by post-transcriptional mechanisms tightly linked to the growth temperature. Moreover, the decrease in the α-tubulin mRNA abundance observed when promastigotes were cultured at 35°C was accompanied by parasite morphology alterations, similar to that occurring during the promastigote to amastigote differentiation.Conclusions: Information found in the genome databases indicates that α-tubulin genes have been reorganized in a drastic manner along Leishmania speciation. In the L. braziliensis genome database, two loci containing α-tubulin sequences were found, but only the locus at chromosome 13 contains the prototypic α-tubulin genes, which are repeated in a head-to-tail manner. Also, we determined that the levels of α-tubulin mRNAs are down-regulated drastically in response to heat shock by a post-transcriptional mechanism which is dependent upon active protein synthesis.
AB - Background: Alpha tubulin is a fundamental component of the cytoskeleton which is responsible for cell shape and is involved in cell division, ciliary and flagellar motility and intracellular transport. Alpha tubulin gene expression varies according to the morphological changes suffered by Leishmania in its life cycle. However, the objective of studying the mechanisms responsible for the differential expression has resulted to be a difficult task due to the complex genome organization of tubulin genes and to the non-conventional mechanisms of gene regulation operating in Leishmania.Results: We started this work by analyzing the genomic organization of α-tubulin genes in the Leishmania braziliensis genome database. The genomic organization of L. braziliensis α-tubulin genes differs from that existing in the L. major and L. infantum genomes. Two loci containing α-tubulin genes were found in the chromosomes 13 and 29, even though the existence of sequence gaps does not allow knowing the exact number of genes at each locus. Southern blot assays showed that α-tubulin locus at chromosome 13 contains at least 8 gene copies, which are tandemly organized with a 2.08-kb repetition unit; the locus at chromosome 29 seems to contain a sole α-tubulin gene. In addition, it was found that L. braziliensis α-tubulin locus at chromosome 13 contains two types of α-tubulin genes differing in their 3′ UTR, each one presumably containing different regulatory motifs. It was also determined that the mRNA expression levels of these genes are controlled by post-transcriptional mechanisms tightly linked to the growth temperature. Moreover, the decrease in the α-tubulin mRNA abundance observed when promastigotes were cultured at 35°C was accompanied by parasite morphology alterations, similar to that occurring during the promastigote to amastigote differentiation.Conclusions: Information found in the genome databases indicates that α-tubulin genes have been reorganized in a drastic manner along Leishmania speciation. In the L. braziliensis genome database, two loci containing α-tubulin sequences were found, but only the locus at chromosome 13 contains the prototypic α-tubulin genes, which are repeated in a head-to-tail manner. Also, we determined that the levels of α-tubulin mRNAs are down-regulated drastically in response to heat shock by a post-transcriptional mechanism which is dependent upon active protein synthesis.
KW - Expression
KW - Leishmania braziliensis
KW - Untranslated region
KW - α-tubulin
UR - http://www.scopus.com/inward/record.url?scp=84879824453&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-14-454
DO - 10.1186/1471-2164-14-454
M3 - Article
C2 - 23829570
AN - SCOPUS:84879824453
SN - 1471-2164
VL - 14
JO - BMC Genomics
JF - BMC Genomics
IS - 1
M1 - 454
ER -