A set based newton method for the averaged hausdorff distance for multi-objective reference set problems

Lourdes Uribe, Johan M. Bogoya, Andrés Vargas, Adriana Lara, Günter Rudolph, Oliver Schütze

Producción: Contribución a una revistaArtículorevisión exhaustiva

4 Citas (Scopus)

Resumen

Multi-objective optimization problems (MOPs) naturally arise in many applications. Since for such problems one can expect an entire set of optimal solutions, a common task in set based multi-objective optimization is to compute N solutions along the Pareto set/front of a given MOP. In this work, we propose and discuss the set based Newton methods for the performance indicators Generational Distance (GD), Inverted Generational Distance (IGD), and the averaged Hausdorff distance ∆p for reference set problems for unconstrained MOPs. The methods hence directly utilize the set based scalarization problems that are induced by these indicators and manipulate all N candidate solutions in each iteration. We demonstrate the applicability of the methods on several benchmark problems, and also show how the reference set approach can be used in a bootstrap manner to compute Pareto front approximations in certain cases.

Idioma originalInglés
Número de artículo1822
Páginas (desde-hasta)1-29
Número de páginas29
PublicaciónMathematics
Volumen8
N.º10
DOI
EstadoPublicada - oct. 2020

Huella

Profundice en los temas de investigación de 'A set based newton method for the averaged hausdorff distance for multi-objective reference set problems'. En conjunto forman una huella única.

Citar esto