A Semi-Supervised Crop-Type Classification Based on Sentinel-2 NDVI Satellite Image Time Series and Phenological Parameters

Yady Tatiana Solano-Correa, Francesca Bovolo, Lorenzo Bruzzone

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

15 Citas (Scopus)

Resumen

Crop-type classification has been attracting a lot of attention in recent years. In particular since the launch of the Sentinel-2 (S2) satellite which combines a large amount of spectral and spatial information, compared to previous satellite generations. In the literature, several methods exist that perform crop classification in time series, but most of them: i) work at pixel level; ii) perform single-data analysis; and/or iii) consider a single feature. This results in low performance of state-of-the-art methods. This paper presents an approach that works at object-level and exploits both spatial and temporal information coded in NDVI time series and phenological parameters and takes advantage of a semi-supervised paradigm by combining a new hierarchical correlation clustering with an artificial neural network. The effectiveness of the proposed approach was corroborated over an intensive cultivated area located in Barrax, Spain. Crop-type classification was compared to state-of-the-art methods.

Idioma originalInglés
Título de la publicación alojada2019 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas457-460
Número de páginas4
ISBN (versión digital)9781538691540
DOI
EstadoPublicada - jul. 2019
Publicado de forma externa
Evento39th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019 - Yokohama, Japón
Duración: 28 jul. 201902 ago. 2019

Serie de la publicación

NombreInternational Geoscience and Remote Sensing Symposium (IGARSS)

Conferencia

Conferencia39th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019
País/TerritorioJapón
CiudadYokohama
Período28/07/1902/08/19

Huella

Profundice en los temas de investigación de 'A Semi-Supervised Crop-Type Classification Based on Sentinel-2 NDVI Satellite Image Time Series and Phenological Parameters'. En conjunto forman una huella única.

Citar esto