A new efficient 3D Discontinuous Galerkin Time Domain (DGTD) method for large and multiscale electromagnetic simulations

Luis E. Tobón, Qiang Ren, Qing Huo Liu

Producción: Contribución a una revistaArtículorevisión exhaustiva

34 Citas (Scopus)

Resumen

A new Discontinuous Galerkin Time Domain (DGTD) method for solving the 3D time dependent Maxwell's equations via the electric field intensity E and magnetic flux density B fields is proposed for the first time. It uses curl-conforming and divergence-conforming basis functions for E and B, respectively, with the same order of interpolation. In this way, higher accuracy is achieved at lower memory consumption than the conventional approach based on the field variables E and H. The centered flux and Riemann solver are both used to treat interfaces with non-conforming meshes, and both explicit Runge-Kutta method and implicit Crank-Nicholson method are implemented for time integration. Numerical examples for realistic cases will be presented to verify that the proposed method is a non-spurious and efficient DGTD scheme.

Idioma originalInglés
Páginas (desde-hasta)374-387
Número de páginas14
PublicaciónJournal of Computational Physics
Volumen283
DOI
EstadoPublicada - 05 feb. 2015

Huella

Profundice en los temas de investigación de 'A new efficient 3D Discontinuous Galerkin Time Domain (DGTD) method for large and multiscale electromagnetic simulations'. En conjunto forman una huella única.

Citar esto