A Multi-Scale Self-Attention Network to Discriminate Pulmonary Nodules

Alejandra Moreno, Andrea Rueda, Fabio Martinez

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Lung cancer is the main cause of cancer-related deaths. Pulmonary nodules are the principal disease indicator, whose malignancy is mainly related with textural and geometrical patterns. Different computational alternatives have been proposed so far in the literature to support lung nodule characterization, however, they remain limited to properly capture the geometrical signatures that discriminate between each malignant class. This work introduces a multi-scale self-attention (MSA) network that accurately recovers geometrical and textural nodule maps. At each hierarchical level is recovered a set of saliency nodule maps that find non-local nodule correlations, properly representing radiological finding patterns. Validation was performed on the LICD-IDRI dataset, obtaining classification percentages that outperform the state of the art: 95.56% in accuracy, and 98.67% in AUC.

Idioma originalInglés
Título de la publicación alojadaISBI 2022 - Proceedings
Subtítulo de la publicación alojada2022 IEEE International Symposium on Biomedical Imaging
EditorialIEEE Computer Society
ISBN (versión digital)9781665429238
DOI
EstadoPublicada - 2022
Evento19th IEEE International Symposium on Biomedical Imaging, ISBI 2022 - Kolkata, India
Duración: 28 mar. 202231 mar. 2022

Serie de la publicación

NombreProceedings - International Symposium on Biomedical Imaging
Volumen2022-March
ISSN (versión impresa)1945-7928
ISSN (versión digital)1945-8452

Conferencia

Conferencia19th IEEE International Symposium on Biomedical Imaging, ISBI 2022
País/TerritorioIndia
CiudadKolkata
Período28/03/2231/03/22

Huella

Profundice en los temas de investigación de 'A Multi-Scale Self-Attention Network to Discriminate Pulmonary Nodules'. En conjunto forman una huella única.

Citar esto